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Abstract

The first-, second-, and third-order temperature coefficients
of the elastic stiffnesses and compliances of alpha-quartz have been
determined using thickness modes of double-rotated quartz plates
based on the Christoffel theory of thickness vibrations. The tempera-
ture dependence of all possible thickness modes can be calculated from
the values of the elastic stiffnesses and their temperature coeffic-
ients as derived during this investigation. A curve showing the locus
of the first-order zero temperature coefficient of frequency of thickness-
shear modes has been calculated and compared with experiments. The
second- and third-order temperature coefficients of frequency of the
first-order zero quartz cuts are given. Applications to AT, BT, CT,
and DT cuts are made by comparing the calculated with the experimental
values which characterize the frequency temperature behavior of crystals.
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HIGHER ORDER TEMPERATURE COEFFICIENTS
OF THE

ELASTIC STIFFNESSES AND COMPLIANCES OF ALPHA-QTJARTZ

INTRODUCTION

The general theory of the propagation of plane waves in anisotropic media, as derived by
Green (1] in 1839, results in three possible types of plane waves for any direction of propaga-
tion, each wave having a different velocity and the three directions of vibration being mutually
perpendicular.

In 1877 Christoffel (2] wrote the differential equations of motion governing plane waves
in terms of strain instead of stress. The six so-called Christoffel moduli Fik which are combina-
tions of the 21 stiffnesses cxi. (X,4z = 1,2...,6) ahd the direction cosines of the wave propagation
were thereby introduced. In order to describe plane waves in a general triclinic material, only
the six so-called Christoffel moduli are required as the strain components perpendicular to the
direction of propagation are prohibited by lateral inertia.

The solution of the three second-order differential equations derived by Christoffel leads
to three resulting stiffnesses cm (m = 1, 2, 3) which are related to the velocities of wave prop-
agation and the directions of the displacements which are generally neither parallel nor per-
pendicular to the direction of the wave propagation.

The resonance frequencies of thickness modes of an infinite crystal plate, based on
Christoffel's equations, were derived in 1932 by Koga [3] in closed form, but correspondingly.
simple solutions for the thickness modes cannot be obtained for a bounded plate. The equations
for thickness-shear and flexural vibrations of crystal plates have been solved in a series of
papers by Mindlin [ 4] . Koga's solution, however, can be considered a zero-order approxima-
tion, and the resulting stiffness cm, leading to values of the wave velocity for each of the
three thickness modes of motion, approximates frequency expressions close to the values
obtained by a higher approximation. The approximate equations can be used to determine the
higher order temperature coefficients of the elastic stiffnesses.

The first-order temperature coefficients of the stiffnesses and compliances of alpha-quartz
were originally derived by Bechmann (51 in 1934, based on Christoffel's theory, using meas-
ured values for the temperature coefficients of frequency of thickness modes of plates and
extensional modes of bars in the 200 to 60'C temperature range. These temperature coefficients
of the stiffnesses are of interest for practical application. The first-order zero temperature
coefficients of frequency of AT- or BT-type quartz plates, for example, can be calculated using
these values. The temperature coefficients of the elastic stiffnesses are not linear with temper-
ature in a wider temperature range, and temperature coefficients of higher order have to be taken
into consideration by use of a power series. It is sufficient to determine the first three orders
of temperature coefficients of frequencies and stiffnesses to obtain satisfactory agreement be-
tween measurements and calculations. Difficulties would be encountered, however, if the tem-
perature dependence were described using temperature coefficients of orders higher than three.

A modified theory of elasticity was considered by Laval [6] in 1951, and later by others,
proposing that the asymmetrical part of the stress tenser enters into the constitutive relations,
thereby increasing the number of elastic constants compared with the classical theory.
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Laval's theory of elasticity demands, e.g., for the crystal class D2d, two different stiff-
nesses c44 and c77 instead of the elastic-shear stiffness C44. Jaffe and Smith (7] have car-
ried out new measurements on ammonium dihydrogen phosphate by two methods: (1) measure-
ments of the piezoelectric resonances, and (2) measurements using the pulse echo method, both
giving the shear elastic stiffnesses directly. Measurements of shear wave velocities by the two
simple methods show the velocities of the two waves involving shear between the Y- and Z-
axes to be equal well within the experimental error limits.

According to Laval's theory of elasticity the number of elastic constants for the crystal
class D3 is increased by C55 X c44 and c17. Zubov and Firsova [83 carried out a new deter-
mination of the elastic stiffnesses of quartz using the increased number of elastic stiffnesses.
Their values fall within the limits of accuracy of measurements. The experimental values for
the frequency constants of various quartz plates vibrating in thickness modes, and previously
used for determination of the elastic stiffnesses given by Bechmann (9], have been recalcu-
lated with respect to the new theory. He found that the values for c4 4 and c5 5, c1 4 and C17
are so close and so critical that from an experimental point of view, no conclusions can be
drawn nor decisions made as to whether the classical theory or the Laval theory is valid.
Recent studies by Mindlin (10] show that the principles of conservation of momentum and
energy are not fulfilled by Laval's theory. In the following, determination of the temperature
coefficients of the stiffnesses is based on the classical theory of elasticity. Figure 1 shows
the reasured frequency-temperature behavior of the AT, BT, CT, DT, and RT cuts and, in
addition, the so-called optimum angle of an AT cut, so defined that its frequency temperature
dependence, in the temperature range -40* to 90'C, for example, is reduced to a minimum.
Table 1 lists the angles of orientation 0 for these cuts and the valups for their second- and
third-order temperature coefficients of frequency b and c respectively.

CHRISTOFFEL'S THEORY OF PLANE ELASTIC WAVES IN CRYSTALS

Christoffel's theory of the propagation of plane elastic waves in crystals is well known
and treated in many papers and text books [113. It is therefore unnecessary to repeat this
theory.

The differential equation for plane waves in anisotopic media is written considering one
dimension, that of the propagation s with the direction cosines al, a2, a3 in the form

where c is

c = Flip + Fg2 q2 + ra3 r2 + F23,qr + F31 rp + F-12pq (2)

and

Tlk Cij,ki j (3)

the Christoffel stiffnesses, a combination of the stiffnesses cik and the direction cosines. The
constants p, q, r, when normalized by p2 + q2 + r2 = 1, are the direction cosines for the dis-
placement ( j. To solve Eq. (1) for an infinitely extended plate, the boundary conditions for
the free plate
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= 0 for s = 0 ands = t(tis the thickness of the plate)s

have to be introduced.

When considering the propagation of elastic waves in a piezoelectric material, an addi-
tional piezoelectric stress due to the electric field E must be introduced. The elastic properties
of an ionic lattice, which cannot be discussed separately, must be considered in conjunction
with the theory of piezoelectric and dielectric effects. Because of the coupling of the strain
and stress tensors with the vectors of electric field and electric displacement, a slight modifi-

m cation of the elastic stiffnesses c. = cXE occurs, becoming cX4 De, where Ds refers to con-
stant normal displacement. For infinite plates, on the basis of Maxwell's equation, Dnormal
( = Ds) and Etangent must be continuous and therefore the related coefficients ck and Fik are
mixed with D = 0 normal to, E = 0 parallel to, the wavefront. Consequently, Fikj beconies
FikD, the direction cosines of the displacement change, and the resulting stiffnesses CmE

become cmD. Between the displacement e(p, q, r) and the resulting elastic stiffness c, the
system of linear equations exists:

prl + qF 1 2 + rr 1 3 = pc

pr 1 2 + qr 2 2 + rF"2 3 = qc (3a)

PF 1 3 + qF 2 3 + rF 3 3 
= rc

The secular equation defining the three resulting stiffnesses cm of a piezoelectric mate-
rial as a consequence of Eq. (3a) is given by

1-1D r F 1 2 DS 1-1 3 Ds

F 12 Ds P22Dc D s  r- 23Ds

F 13D s  F 2 3 Ds f- 3 3 D -cDs

E D, F E F E (4)
11 -C 12 13

- 12 E 22 -EC D , 23 E2 = 0E
F 13 E  F 23 E F 3 3 E -- D, E3

I E2 3 - &

The expressions for FikE and FikDs at constant electric field and constant normal displace-
ment, respectively, in these equations are related by

D s
Fik iE -ik (5)

CS

The direction cosines p. qr, r? (,r 1,2,3) can be calculated from any two of the three equa-
tions (3a), for example, from the second and the third equations of (3a), one obtains

1

P'r 1 [(122 - c.r) (F 3 3 - ..)-F 2 3
2 ],W,

1
q, - I ["13 123 Fl1 (733 c ,

12 23 - 13 (122 c ]
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W, - { [(F 2 2 - CT) (F8 3 - 0-) - 23
2 ] 2

+ [F 13F2 3 - rF 2 (F 33 - C)]2

+ [F 1 2, 2 3 - Fl(F 2 2 - c)]

The effective piezoelectric constant, corresponding to the eigenvalue cm, is

em =t eim

where the direction cosines A for the displacements follow from Eq. (4). When the components
of the third-order piezoelectric tensor are written with three indices, the following conditions
hold:

en,kl = en,lk

reducing the possible 27 combinations of coefficients to 18. Similarly, when the components of
the fourth-order stiffness tensor are written with four indices, the following conditions hold:

ci,k I  = cij,lk ci,kl cji,lk = Cki,ij  = CkIJi = Clki =

reducing tILe 81 possible combinations of the indices to 21. The following table shows the
scheme used for converting the double indices i,j (ij = 1,2,3) to a single index L ( I = 1,
2 ... , 6).

II - 1

22 - 2

33 - 3

23 - 4

31 - 5

12 - 6

The expressions for Christoffel's stiffnesses Fik : ki, (i,k : 1,2,3), the piezoelectric
stress constants 31 (I - 1,2,3), and the permittivity t, of a general triclinic crystal as given
in Eq. (4) follow from Table 2, e.g.,

2 2 2
F-l1= Cll21  c 6 6 '2 2 C5 5 " 3  + 2c 5 6 a2 a 3 + 2c 5 1 a 3a1 + C1 aa 2  (6)

This scheme reduces considerably for quartz which belongs to the trigonal crystal class D3 .
The stiffnesses c 11, c3 3 , c 12, c 13, C44, c 14 are finite. The following relationships hold: c 2 2

cil, c 5 5 =c 4 4 , C6 6  - ,'2 (cll - c 1 2 ), cl, ::c 2 3 and- c 2 4  =c 5 6  =c 1 4 . Further, c15 =c1r

c 2 5 = c 2 6  c35 =c36 0. The piezoelectric constants are zero except eli - e 1 2  -- e 2 6

and e 1 4 =- e2 5 . For the dielectric constants g22 ' 11 and f12 E13 ': 21 '23 ': 31 :

'32 = 0 hold. The scheme of the Christoffel stiffnesses Fik, the piezoelectric stress constants
= 1, and the permittivity c, reduces for the trigonal crystal class D:j, which includes alpha-
quartz, to the scheme shown in Table 3.

Considering the eigenfrequencies = 2-f of an infinitely extended plate vibrating in thick-
np2 kt

ness modes, introducing c -- , and taking into account the boundary conditions cos T = 0
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kt nir
having the solution 2 ; the frequency in first approximation is

on t Fe (m = 1, 2, 3) (7)

where n is an odd integer. Correction terms, due to the piezoelectric effect and coupling with
flexural modes, are omitted. The frequency fm(n) for the nth overtone for mode m is determined
by the eigenvalue CmDs, the thickness of the plate t, and the density p. For practical purposes
it is more convenient to consider the frequency constant N = ft, rather than the frequency, as
the frequency f and the thickness t are the measured quantities. Generally, three solutions for
the frequency fm (m = 1, 2, 3) of the thickness vibrations and their overtones exist for each
individual plate and in the following are designated as modes A, B, and C. Mode A is essen-
tially the thickness-extensional mode while B and C are essentially thickness-shear modes.
The frequencies for each plate always follow in the sequence fA > fB > fC-

The equation for the temperature behavior of the frequency can be developed in the fol-
lowing power series

-- f Tfen ) (T - To)n , (8)
fo fo n-

where

Tf(n) = n! f n f )T (8a)

TfCn) (n 1, 2, 3) heing designated a, b, and c respectively. T is the variable temperature and
T. the reference temperature.

The relationships between the first-order temperature coefficients of frequency Tfe 1) and
the first-order temperature coefficients of the stiffnesses Tc\.j 1  are given by

2T 1) = Tc(1 ) - Tc( 1) - 2Tt(') ; (9)

the relations for the second-order temperature coefficients of frequency and stiffnesses are

2[Tff2 ) _ %(Tfr)) 2 ] = Tc(2) T ,2 2Tt(2)

(10)

_2 (Tc( 1))2 (T ( 1))2 2(T t 1 )'

and for the third-order

2[Tf(3 ) - Tf(2'TfV' + 1,'3(Tf 1))3] - Tc( 3 ) - Tr(-3 ) - 2Tt( 3 1

- iTc 2 'Tc (1 ) - T;(2'Tp (1) - 2Tt(2)Tt(')j (11)

+ 1/3 '(Tc(1)3 (T r )3 - 2(Tt l))a1

where Tp = -(2a, + az) and ax and az are the expansion coefficients. Tt is the temperature
coefficient of the thickness of the plate. The essential term in these equations is the
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temperature coefficient of the eigenvalue Tc determined by Eqs. (9) to (11); however, the terms
resulting from the dimensions of the plate may be considered as corrections.

The elastic stiffnesses, the resulting elastic stress constants, and the first-order tempera-
ture coefficient of frequency have been calculated using a Burroughs 220 computer as a func-
tion of the orientation angles 0 and 9 for quartz in the interval

-90" < e < +900, 00 _, < +30° .

The intervals of calculation were t a = V and /n = 1. The orientation of a plate is shown in
Fig. 2. The direction cosines a! (i = 1, 2, 3) defining the normal of the plate are given by

a, :sin Ocos &

a2  cos Ocos 6

a 3  sin &

when the Z-axis is chosen as the axis of the polar coordinate system and the angle t is taken
from the X-axis. Figure 3 shows the frequency constants Nm in kc.mm, the first-order tempera-
ture coefficient of frequency Tfm( l) in 10"6 /°C ,tnd the piezoelectric stress constant em in 104
esu cm " 2 , as plotmed for modes A, B, and C corresponding to m = 1, 2, 3. The IRE notation [13]
was used in these curves and throughout this report in describing a generally rotated plate as
shown in Fig. 2 for the RT cut. By use of this notation, the Y cut is defined as ( 00, 6 =00;
an AT cut by 4, 0', 0 = 350; the BT cut as ¢ = 0', = - 49'. The curves in Fig. 3 are plotted
for the azimuth = = 00, 60, 120, 180, 24', and 300. From these curves three dimensional models
have been made which are shown in Figs. 4-12.

METHODS AND EQUIPMENT FOR MEASUREMENTS

The measurements carried out included: 1) frequency measurements of the three modes of
vibration at room temperature, and 2) frequency-temperature dependence of these three modes in
an extended temperature range.

The frequency range for these three modes of vibration were approximately 4 to 8 Mc with
fA >fB >fc. Most of the crystals were excited in a CI Meter Type TS 330/TSM. A Heegner
oscillator [ 12 was used sometimes to excite modes whose activity was too low for excitation
in the CI Meter. The frequencies were determined with a Hewlett-Packard Counter, Model 524B.

The apparatus used for measuring the dependence of crystal frequency on temperature
included: 1) a small aluminum cylinder having two cavities, with a canned crystal unit inserted
in one of the cavities and a thermocouple in the other; 2) a calibrated precision bridge to deter-
mine the temperature; 3) a wire heating element which was wound around the aluminum cylinder;
and 4) a well-insulated Dewar flask containing liquid nitrogen.

Measurements of the frequency-temperature behavior were conducted as follows: in order
to obtain a very low initial temperature, the cylinder containing the crystal and a thermocouple
were lowered into the flask containing liquid nitrogen. After the temperature within the two
cavities approximated the temperature of liquid nitrogen, the liquid nitrogen was removed ani
the flask containing the cylinder was sealed to stabilize the temperature within the flask at the
desired temperature. By means of the heating element described above and controlled by a
variac, the temperature was gradually increased and frequency readings were taken at 5'C inter-
vals over the temperature range of approximately - 1 9 6 ' to +170'C.

DETERMINATION OF TEMPERArURE COEFFICIENTS OF STIFFNESSES
ANDICOMPLIANCES OF ALPHA-QUARTZ

A large number of crystals vibrating in fundamental thickness modes and oriented at
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different angles have been investigated with respect to their frequencies and temperature
behavior at USAELRDL. In this report the IRE rotational symbol (yxwl)q5O is used to describe
a generally rotated plate* [13]. Figure 2 shows schematically the orientation angles (k and
0 for double-rotated quartz plates and, particularly, for the so-called RT cut having an orienta-
tion of 0 = 150 and 6 = -3430'. Most of the crystals were oriented at negative 8 angles and
various 0 angles. The plates were square and had a length and width of approximately 0.5 inches,
their edges were bevelled, and the blanks mounted in HC-6 holders. The plate thicknesses were
adjusted so that in all cases, mode B was calibrated at the 5-mc frequency.** Some crystals
oriented at positive angles of 8 and at about 0 = 20' were also investigated. The orientation
0 = 200, 8 = 34020' is known as the IT cuti [14] when vibrating in the C mode. Several
crystal plates with the orientation (xy)8 (0 = 00 to 600 at 100 intervals), (rotated X cuts) have
been made at USAELRDL.

The values for the frequency constant N of the three fundamental modes A, B, and C were
calculated using Eq. (4) and the recently published values for cX of quartz [9]. The elastic
stiffnesses are given in Table 4 (inks units are used throughout this report), together with a
new determination of the stiffnesses by Mindlin and Gazis [15] . Although the formulae on
which the determination b\ Mindlin and Gazis is based do not include the piezoelectric and
thermoelectric terms, they do account for mechanical coupling. The values derived by Mindlin
and Gazis coincide most closely with the stiffnesses given by Bechmann [9] for both constant
electric field and entropy and constant electric displacement and entropy.

The measured crystals had large electrode separations in order to obtain closer agreement
between the measured and observed values.

The values for the temperature coefficients of the elastic stiffnesses Tc are dependent
on the accuracy of the measurements of the temperature coefficients of frequency Tf.. It is well
known that the temperature coefficients of frequency depend slightly on: state of the plate

measured, e.g., the form of the plate (circular or square); the electrode size (ratio e where be
t

is the diameter of the electrode and t is the thickness of the plate); the electrode separation
(whether an air gap or plated blank is used); the order of overtone which changes the zero angles
for the first-order zero temperature coefficients Tf0 1 ; the bevelling of the plate which is nec-
essary to avoid coupling with other modes which gives rise to errors; and the drive level of the
resonator. Further, there are slight differences between the temperature coefficients of natural
and synthetic quartz. Finally, the temperature coefficients of the stiffnesses are dependent on
the approximation of the solution of the equations on which the determination is based.

Some previous investigations of the frequency-temperature behavior of double-rotated
quartz crystals were conducted by Saunders and Hammond [161 based on the earlier calcula-
tion by Bechmann [51 .

The frequency-temperature dependence of the quartz blanks mentioned was measured in the
temperature range -1960 to +170 0 C. All blanks used for frequency-temperature measurements
were plated. The resulting frequency curve was developed in a power series with respect to the
reference temperature T o = 25 0 C up to the third order. The first-, second-, and third-order tem-
perature coefficients of frequency a, b, and c of a number of these crystals, which were used for
the defte-rmination of the temperature coefficients of the stiffnesses, are also listed in Table 5.

*From this rotational symbol, the appropriate coordinate transformation can be easily derived [291 .
"Most of these crystals were fabricated by McCoy Electronics Company, Mount Holly Springs, Pa The

accuracy of the orientation angle was better than 10' for the 0 angle and better than 5' for the 0 angle,
according to the manufacturer.

tThese IT-cut crystals were furnished through the courtesy of Scientific Radio Products, Inc.,
Loveland, Colorado.
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This table gives some of the measured and calculate( values for the first-, second-, a, i -

order temperature coefficients a, b, and c, respectively, for modes A, B, and C. Cry- .Li
marked * indicate that the temperature coefficients of frequency of all three modes X. B. C
have been measured. The calculation of the values for TcN,, n ) (n = 1, 2, 3) following from
Eq. (4) by differentiation with respect to the temperature was made using a Burroughs Datatron
220 Computer.

The newly determined first-order temperature coefficients of the stiffnesses Tc 4 4
(1 )

Tc 6 6
( 1), and Tcl4( 1 ) are considered very accurate, as the values follow from rotated plates

(yxl)O. The behavior of the AT and BT cuts, their orientation angles for the zero temperature
coefficient of frequency and the change of their temperature coefficients with respect to the
angle e are very well known [17] (see Table 6). In addition, the Y cut (yx) which has a first-
order temperature coefficient of frequency of 92.5.10- 6 ,°C has also been.used.

When the angles for the first-order zero temperature coefficient of frequency are used,
=35' 15' for the AT cut, and -49' 13' for the BT cut, and for the slope of the AT cut

ca
S-5.15,10-6 "C," 4, the values in the first column of Table 6 are obtained. By exciting a

high overtone [18] or using a large electrode gap, the zero angle 9, for the AT cut is shifted

to 3.5-22' and for the BT cut to -49'40' end, assuming the same slope of ?- -5.15.10-6'

'C '= for the AT cut, values for Tc (1' Tc 6 6
( 1 , and Tc I (1 are obtained as shown on the

right-hand side of Table 6. The differenco between the two groups of values is also listed in
Table 6 and this may be considered as thE accuracy for determination of the temperature coef-
ficients of the elastic stiffnesses Tc 4 4

( 1) Tc 6 6
( li and Tc 14 ( 1'

Tcl 1) P follows from the X cut (xv) w.'hich has a value for the temperature coefficient offrequency= ofT )1:_0.10-6 'C 1
frequency of TV~ 1) . - 0 C. Tc 3:3 1) Aas determined using the zero angles for the double-
rotated plates (yxwl) '- as listed ,n Table 5. Since the value for Tc 1 3( 1 ) has a small influence
on the temperature behavior, it therefore cannot be considered as accurate.

Table 7 lists the newly determined values for the first-order temperature coefficients of
the elastic stiffnesses for alpha-quartz compared with some earlier determinations. The values
listed in the columns headed "Koga et al., 1958" of Tables 7, 8, and 9 are calculated from
the expressions

A 1-A oAA

AC 1 -cC I 3
A

c - and-4.7 - 'T ' 2 T 2  n 6 T 3

given in their paper. It should be mentioned that the values for the temperature coefficients of
the stiffnesses given byN Atanasoff and Hart '20] contain an error as they assumed that for
quartz c56 ; c14 and obtained the erroneous values Tcl ,I = 107.10-6 and Tc 5 6

( 1 ) = 78.10.6.
The reason for this discrepancy is that the piezoelectric effect was not taken into account. The
values for the stiffnesses given by Atanasoff and Hart 120] have been corrected by Lawson
[ 21] resulting in c 5 6 = c 14 when considering the piezoelectric effect. However, he did not

correct the values for the temperature coefficients of the stiffnesses. Their value for Tc 56
( 1)

is omitted in Table 7.

The second- and third-order temperature coefficients of the elastic stiffnesses have been
determined using the experimental values for the AT and BT cuts £ 17] and the newly observed
values for the frequency dependence of the double-rotated plates. Table S lists the second-
order temperature coefficients of the elastic stiffnesses and Table 9 the third-order temperature
coefficients of the elastic stiffnesses. Both tables contain corresponding values from earlier
determinations by Mason L191 , [22] and Koga, et al. ['24 .
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The compliances s .I and their first-, second-, and third-order temperature coefficients
Tsxg were calculated from the values of the stiffnesses c ,g and their temperature coefficients
Tcx\,, using the well-known relationships between the stiffnesses and compliances

s,\r CU'r= 8x'A =0, '

from which the relationship

6 n 0 n>0
1 c) s,\ (Tc\ (n-P) + Ts X,(P))

follows.

The values for the compliances sk4 are given in Table 10. The first-, second-, and third-
order temperature coefficients of the elastic compliances Ts,, which have been calculated
from the temperature coefficients of the stiffnesses as given in Tables 7, 8, and 9, are listed
in Tables 11, 12, and 13. For comparison, some values from earlier determinations are shown
in these tables. All new values for the temperatvre coefficients of the stiffnesses and com-
pliances refer to 25°C. The values for the stiffnesses and compliances, as determined by
Bechmann [91 and -,iven in Tables 4 and 10, refer to 20'C. It should be mentioned that all
"new" values for the temperature coefficients of the stiffnesses Tc .,W, obtained from meas-
urements of thickness modes, and those of the compliances calculated from the stiffnesses are
values at normal constant displacement D,. The differences between Tc , (n)E, the isagric
values, and Tcj ( n)Ds are within the limits of accuracy of measurements of the temperature
dependence of these plates.

APPLICATIONS TO DOUBLE-ROTATED QUARTZ PLATES

Since the temperature coefficients of the stiffnesses are known, the temperature behavior
of thickness modes of any orientation can be calculated from these values. Altitude charts for
the first-, second-, and third-order temperature coefficients of frequency for the C mode are
given in Figs. 13, 1, and 15 respectively, and it can be seen from Fig. 13 that there is a con-
tinuous series of orientations for the thickness mode C of plates having a first-order zero tem-
perature coefficient of frequency for all values of t (0' to 30') at both positive and negative
angles of 6 adjoining the AT cut at € = 00 and 4 = 35'. Similar charts showing the distribution
of the temperature coefficient of frequency for mode B are given in Figs. 16, 17, and 18. At
negative angles of C-, mode B exhibits a continuous series of first-order zero temperature coef-
ficients in the range ¢ = 0' to 14' at two angles of -, both on the negative side adjoining the
BT cut at 4 = 00 and 6 = - 49'. The curves for the first-order zero temperature coefficient of
frequency for modes B and C as seen in Figs. 13 and 16 are identical with the curves shown
in Figs. 19 and 20.

Fig. 19 shows the calculated locus of the first-order zero temperature coefficients of
frequency for modes B and C in a rectangular coordinate system compared with some measured
results. The values for the mode C are indicated by X, those for the mode B by 0. The agree-
ment between the calculated and measured zero angles is better than 3 percent and, taking
into account the uncertainties mentioned above, the agreement is considered very satisfactory.

Figure 20 represents the locus of the first-order zero temperature coefficients of frequency
in a polar coordinate system illustrating the threefold symmetry of quartz showing that. at an
angle ; + n 120' (n = 0, 1, 2), the elastic properties of quartz are identical with those of the
angle ¢. Mode A vibrating extensionally has a negative temperature coefficient of frequency
for all orientations.

9



Figure 21 shows the frequency constants N of the modes B and C when Tf1) = 0. Figure
22 shows the second- and third-order temperature coefficients of frequency for the thickness
mode C when Tf(1) = 0 for negative angles of 8.

For mode C the second-order temperature coefficient of frequency is always negative and
reaches a minimum value of about -6.5 .10- 9/(oC) 2 at 0 = 150. The third-order temperature
coefficient changes its sign as a function of the angle qb at negative L angles but the zero
angles for the first- and third-order temperature coefficients of frequency do not coincide.

At the angle 4 = 150, e = -34*30 ' , mode C shows a first-order zero temperature coeffi-
cient of frequency, a second-order temperature coefficient of frequency of -6.5.10"9/(oC) 2 , and
a third-order temperature coefficient of -2 .10"12/(cC) 3 (see Table 5). This cut has been pro-
posed for practical applications and designated the RT cut [26] . Other double-rotated cuts
may be useful for application at low temperatures. For example, the C tmode of the cut 4 = 100,
S-330 shows a very small frequency change with temperature in the range -1600 to 0CC, as

the three terms for the temperature behavior balance (Table 5). An experimental frequency-
temperature curve is shown in Fig. 23. The disadvantage of the double-rotated cuts is that all
three modes are excitable, modes B and C being rather close together. The separation between
these modes is in the order of 7 percent for the RT cut and in the order of-10 percent for the IT
cut. The B mode displays a large negative second-order temperature coefficient of frequency
for all zero temperature coefficient cuts, including the BT cut, which for practical purposes
makes mode B less useful than mode C.

APPLICATIONS TO AT- AND BT-CUT QUARTZ CRYSTALS IN AN EXTENDED
TEMPERATURE RANGE

The frequency and temperature behavior of the plates (yxl)O, the so-called rotated Y-
plates, is shown in Figs. 24-27. Figure 24 gives values of the rotated stiffnesses c66' = C44
sin 2 r + c66 cos 2 t + 2c 14 cos 0 sinO, as a function of the angle 6 in the range 8 = -90' to
+90', derived from the values c66, c44, and c 14 as given in Table 4 [9]. Figure 25 shows
the frequency constant N in the same range. Figures 26 and 27 give the first-, second-, and
third-order temperature coefficients respectively, calculated from the values given in Tables
7, 8, and 9, usingEqs.(9) through (11). The ATcut is described by the angle 19 = 35*15 ° the BT
cut by the angle 8 = -49013'. The AT cut belongs to mode C while the BT cut belongs to mode
B. The jump from mode B to mode C occurs because there is one orientation for which the
secular Eq. (4) becomes degenerate, having two roots of the same value. It should be recognized
that it results in a discontinuity in the other constants derived from the stiffnesses, e.g., the
temperature coefficients.

For the family of cuts (yxl) 2 (€ = 0° ) the secular Eq. (4) becomes

(F 1 1-c) 0 0

0 (7 2 2 -c) F23 0.

0 23 (F 3 3 -c)

One root is c = F1. This corresponds to mode C. The other roots are

2 + T- 2 + 2 - , .
cA,B 22 3 2 22 2 - 2F 22 -3 3

where the minus sign corresponds to the smaller root (mode B). Modes B and C have a common
eigenvalue at the value of 6 for which

10



r 1 1
2 - F122 - 1 1r 3 3 + F 2 2 r 33 - F 23

2 = 0

Substitution of the values for the cX,, and the direction cosines leads to a cubic equation with a
single real root corresponding to an orientation of

9 -23"50'

Physically, the mode of vibration designated B for the angle 6 on one side of this value becomes
mode C on the other side and vice versa. The difficulty arises because the modes are defined
in such a way that mode A has the highest stiffness and mode C the lowest, where, for the region
under consideration, modes B and C actually cross and mode B becomes, for positive angles,
the lowest mode. For 0 , 0' there is no ambiguity as the solutions of Eq. (4) are all distinct.
The discontinuity is not apparent in the curves shown in Figs. 24 through 27.

Considering the AT and BT cuts, a maximum and minimum for the frequency-temperature
curve exist as a function of the orientation angle 9 following from Eqs. (8) and (9a). The
behavior of the maximum and minimum can be represented by a parabola having the parabola
constant b, (ki = max or min) for the angle considered. The calculated and observed values for

Tmax and Tmin vs. the orientation angle 9 for the AT cut in the range t = 350 to 400 and for the
BT cut in the range 9 = -46' to -52' are given in Figs. 29 and 30 respectively [17].

The inflection temperature Ti is defined by

-Tf -
2 f

- = 0
aT ?T 2

The inflection temperature for the zero-temperature cuts depends on the angle of rotation. The
inflection temperature for the AT cut is about 25'C. The inflection temperature for mode C
increases when the angle ; on the positive side of the angle t6 is increased. Figure 28* shows
the inflection temperature obtained from cuts made of natural quartz when the angle € is
increased from 0' to 30'.

For the IT-cut (€ = 20') the inflection temperature is about 70'C. The inflection temper-
ature Ti is given by

b
Ti - To = 0

The inflection temperatures for the AT and BT cuts, as function of the angle 6, are also
shown in Figs. 29 and 30. The temperature of liquid nitrogen N is -196°C; for liquid hydrogen
H is -253°C; and for liquid helium He is -269°C as indicated in these figures. The calculated
values for the parabola constant b4 as a function of the orientation angle 6?, corresponding to
Tmax and Tmin as shown in Fig. 29, are presented in Fig. 31 for the AT cut, the values cor-
responding to Fig. 30 are shown in Fig. 32 for the BT cut.

APPLICATIONS TO QUARTZ CUTS VIBRATING IN CONTOUR MODES

The frequencies and their temperature behavior are determined for contour modes of plates
and extensional modes of bars by the elastic compliances and their temperature coefficients.
Two cuts of interest exist for square plates which have one side parallel to and are rotated
around the X axis at angle 6, i.e., cuts of the orientation (yxl)t6, where the firstorder tempera-
ture coefficient of frequency is zero, the CT cut with an orientation angle of approximately

*Figure 28 also shows the second- and third-order temperature coefficients of frequency when Tf 1 ) 
= 0

as a function of t. At positive angles of 6, the AT cut is obtained for 4 - 00, and the IT cut obtained

for 'I 20".
11



38', and the DT cut with an angle of approximately -51'. There are three types of
these cuts:

1. Square plates with one side parallel to the X axis, Yqo- (yxl) .

2. Square plates with the K axis diagonal, Y9 4 5 0 (yxlt)c045 ° .
Contour-extensional mode I of square plates [27].

3. Circular plates Ygo.

The frequencies for these three modes are given by the equation

f = , (12)
2hy s' 5 5

where h is the length I of square plates or the diameter of circular plates. The expressions
for F for plates Yoc and plates Y_.15 ° where F = 1 can be found in [27] , while for circular
plates Y.o no solution has been derived. However, the value obtained experimentally on circu-
lar quartz plates is F 1.0551 + 1 percent.

Figure 33 gives the values for the rotated compliances '55 = s'44 : s4l cos7' - s66

sin2 - - 4sII cos9" sin- as a function of the angle -' in the range . 2 -90' to -90' as derived
from the new values s66. s.j t, and s 1.1 presented in Table 10. Figure 34 shows the frequency
constants N in the same range mentioned for the three cases Y-o-, Y 15° , and Y1z. Figure 35
gives the first-, second-, and third-order temperature coefficients of frequency calculated from
the ne%\ values given in Tables 11, 12, and 13.

It may be mentioned that the t\%o zero angles of the temperature coefficient of frequency,
first-order, are slightly dependent (in the order of t 1') on the configuration, the thickness of
the plating, and the mounting of the plate. Table 14 gives the observed and calculated values
of the frequency constants and the temperature coefficients of frequency for the CT cut. Table
15 presents the same information for the DT cut. The experimental values given in Tables 14
and 15 for the zero angles are obtained from earlier investigations where the electrodes were
sprayed and baked L28]. According to Eq. (12), the values for the temperature coefficients of
frequency of the three modes are equal, as F is a constant determined by boundary conditions
and therefore all three modes should have identical angles for their first-order zero temperature
coefficients of frequency.

The calculated maximum and minimum for the frequency-temperature curve as a function
of the orientation angle are shown in Fig. 36 for the CT cut. In this curve the experimental
values for Tmin, assumed to be linear in '2S , are also presented by dashed lines. The
theoretical and experimental values are in very good agreement. The calculated values for the
parabola constant b, for this cut as a function of the orientation angle -. , corresponding to Fig.
36, are exhibited in Fig. 37. Similarly, the calculated temperature of the zero temperature coef-
ficient of frequency vs the orientation angle r__ for the DT cut is shown in Fig. 38. The calcu-
lated values for the parabola constant b, for the DT cut as a function of the orientation
corresponding to the zero coefficient temperature curve of Fig. 38, are shown in Fig. 39.
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TABLE 1

FREQUENCY TEMPERATURE BEHAVIOR OF AT, BT, CT, DT, AND RT CUTS

ANGLE a b c
CUT a 10- 6/0C 10"9/(oC) 2  10 1 2/(°C) 3

AT 00 35015 '  0 0.4 109.5

AT
Opt. Angle 00 35020 '  -0.40 -0.02 109.3

BT 00 -490 12' 0 -40 -128

CT 00 36020' 0 -58 -151

DT 00 -50040' 0 -17 52

RT 150 -34030' 0 -6 -2

TABLE 2

GENERAL EXPRESSIONS FOR THE CHRISTOFFEL STIFFNESSES Fik,
THE PIEZOELECTRIC STRESS CONSTANTS -

AND THE DIELECTRIC PERMITTIVITY Es

a1 2  a-2 a32 a a 3  a3a I I Ol2

F 1 1  Cl r6 c 5 5  2C65 2c 5 1  2c 16

F 2 2  c66 c22 c44 2c 2 4  2c46 2c 6 2

r 3 3  c55 c44 c33 2c43 2c 3 5  2c 5 4

F"2 3  c65 c24 c43 c23 + c 44 c45 + c 63 c64 + c 25

F 1 3  c51 C46 c35 c45 +c36 c31 +C55 c56 +c41

F 1 2  c16 c62 c54 c64 +c52 C 5 6 +c14 c12 +c66

I  ell e 2 6  e 3 5  e 2 5 +e 3 6  e 3 l 4 eI 5  e, 6 +e 2 1

I el6 e22 e.4 e 2 4 +e 3 2  e 3 6 +e 1 4  e 1 2 +e 2 6

3$ e5 e24 e 3 3  e 2 3 +e 3 4  e 3 5 +e 1 3  e, 4 +e 2 5

e 3 3  2E 2 3  2E13

..... i s _
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TABLE 8
EXPRESSIONS FOR THE CHRISTOFFEL STIFFNESSES Fik,

THE PIEZOELECTRIC STRESS CONSTANTS I AND THE
DIELECTRIC PERMITTIVITY c. FOR THE TRIGONAL CRYSTAL CLASS

Ds, e.g., ALPHA-QUARTZ

10. 0208 a8 a I a la 2

r 1 1  Cil C66 c44 2c 14  0 0

r 2 2  c66 Cil c44 -2c 1 4  0 0

3 3  C44 C4 4  C83 0 0 0

F12 3  C14 -C14 0 c 13 + C4 4  0 0

Fa 1  0 0 0 0 c18 + c44 2c 1 4

F 1 2  0 0 0 0 2c 14  c12 + c66

El ell -ell 0 -C14 0 0

2 0 0 0 0 e14 -2el1

23 0 0 0 0 0 0

68 f El1 633 0 0 0

TABLE 4
ELASTIC STIFFNESSES c,\.AIN 109 Nm 2

FOR ALPHA-QUARTZ AT 200 C

STIFFNESSES OF QUARTZ STIFFNESSES OF QUARTZ
Xj/ Bechmann (9) Mindlin and Gazis (15)

Ea Da

11 86.74 87.49 86.75

33 107.2 107.2 107.2

12 6.99 6.23 5.95

18 11.91 11.91 11.91

44 57.94 57.98 57.8

66 39.88 40.68 40.4

14 -17.91 -18.09 -17.8
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TABLE 6
VALUES FOR Tc 4 4 (1 ), Tc 6 6

( 1) , Tcl4(1) IN 10"6/oC USING TWO
DIFFERENT ZERO ANGLES OF THE AT AND BT CUTS

ZERO ANCLE ZERO ANGLE

AT: 8 = 35"15' AT: & = 35022 '

BT: t9 = -4)013' BT: 6 = -49040' PERCENT

Tc 4 4 (1) -177.4 -175.6 1.02

Tc 66
(1 )  177.6 179.3 0.96

Tc 14(1) 101.3 103.9 2.55
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TABLE 8

VALUES FOR THE SECOND-ORDER TEMPERATURE COEFFICIENTS OF THE
STIFFNESSES FOR ALPHA-QUARTZ IN 109/(oC) 2

GPO [23] NEW
MASON [22] RESEARCH REPORT KOGA, et al.[24) VALUES

1951 No. 13524 1958 1961

1951 1961

To =500 C To 
= 20 0 C T o =200 C T o =250C

Tc 1 1
( 2 )  -75 -407 -107

Tc33(2)  -187 -1412 -275

Tc1 2(2) -1500 -7245 -3050

Tc 13
( 2 )  -2000 -596 -1150

Tc 4 4
( 2 )  -212 -233 -225 -216

Tc 66 (2) -5 193 201 118

Tc 14(2) -270 -82 -13 -48

TABLE 9

VALUES FOR THE THIRD-ORDER TEMPERATURE COEFFICIENTS
OF THE STIFFNESSES FOR ALPHA-QUARTZ IN 10- 12,/(oC)3

MASON [223 KOGA et al [24] NEW VALUES
1951 1958 1961

T o =50 0 C T o 
= 20 0 C T o =25)C

Tcll -15 -371 -70

Tc 3 3
( 3 )  -410 -243 -250

Tc 12( 3) 1910 4195 -1260

Tc1 3 
( 3 )  600 -5559 -750

Tc44(")  -65 -190 -216

Tc 6 6
( 3 ) -167 -777 21

Tc 14
( 3 ) -630 -625 -590
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TABLE 10

ELASTIC COMPLIANCES sX,, FOR ALPHA-QUARTZ

AT 200 C IN 10-12 m2 N-1

COMPLIANCES OF QUARTZ
COMPLIANCES OF QUARTZ Calculated from Mindlin and
According to R. Bechmann [9] Gazis (15]

Usi.ng their Values cX

S & E ~ S kuD s;

11 12.77 12.64 12.71

33 9.60 9.60 9.60

12 -1.79 -1.66 -1.61

13 -1.22 -1.22 -1.23

44 20.04 20.03 20.017

66 29.12 28.5S 28.64

14 4.50 4.16 4.41
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TABLE 12
VALUES FOR THE SECOND-ORDER TEMPERATURE COEFFICIENTS OF THE

COMPLIANCES FOR ALPHA-QUARTZ IN 10 9 /(-C) 2

GIEBE.[25 GPO128]
AND MASON [22] RESEARCH REPORT NEW VALUES

BLECHSCHMIDT 1951 No. 13524 1961
1940 1951

T, =500 C T o =200 C T o :250 C

Ts 11(2) 58.5 85.3

T' (2) 144 247LS3 3

Ts 12(2) -575 -1385

.Ts1 3
(2)  -2110 -718

Ts 4 4 (2) 298 200 272 262

Ts6 6
2 )  -118 -18 -83 -85

Ts 14 (2) 40 83 93

TABLE 13
VALUES FOR THE TH RD-ORDER TEMPERATURE

COEFFICIENTS OF rHE COMPLIANCES FOR
ALPHA-QUAFTZ IN 1012 ,(CC):

MASON [2!!] NEW VALUES
1951 1961

T, = 50c C T, = 25c C

Tsl( 3  33 3A.3

Ts33 (3)  570 300

Tls -215 -1460

Ts 610 -S23

Ts44 
(3 )  -6 162

Ts6 6(3) 3 -135

Ts 14 (3 -54 -465
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TABLE 14

MEASURED AND CALCULATED VALUES FOR FREQUENCY CONSTANTS N AND
FIRST-, SECOND-, AND THIRD-ORDER TEMPERATURE COEFFICIENTS

FOR THE CT CUT VIBRATING IN CONTOUR MODE

OBSERVED CALCULATED
SYo0 °  Y0450 Y190 Y00 Y19450 Yq00

(yxl) 3 Angle 0 3740 '  36015' 86020'

kc-mm N 3087 3583 3766 3145 8594 3798

10"9/(c a C)0 0

b 1 -58 -58

0 -151 -161

10 .,/OC '6a 5.28

10 9 /(oC) 2  4.75

10-12/(cC)3 
2.10

oc Tm 250 250

0C 45c See
Fig. 36

t

29



TABLE 15

MEASURED AND CALCULATED VALUES FOR FREQUENCY CONSTANTS N AND
FIRST-, SECOND-, AND THIRD-ORDER TEMPERATURE COEFFICIENTS

FOR THE DT CUT VIBRATING IN CONTOUR MODE

OBSERVED CALCULATED

Ye0 ° Y 0 4 5o Ye o Yaoo Y6 4 5 0 Y9 0

+ 1!
(yxl) 0 Angle a -51050' -510 10' -50°40 '

kc-mm N 2073 2341 2471 2085 2356 2486

10-6,fC a 0 0 I 0

10 9 ,(°C) 2  b -17 -19.4

10-1 2,,(oc) 3  , 52 75.6

10- 6 ,,c a H -2.0 

-2.0

_c'l

10- 12,, (c,C) 3  -. w 10

0C Tm 250 25c

cc -75c
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APPENDIX 1
VALUES FOR THE MATERIAL CONSTANTS USED IN THIS INVESTIGATION

In order to determine the values for TcX, ( D), Tsk ( n ) (n = 1, 2, 3), the following values
for the material constants of alpha-quartz have been used in the course of this investigation:

1) Elastic stiffnessess c),\ of alpha-quartz are given in Table 4; elastic compliances s

of alpha-quartz, in Table 10.

2) ell = 0.171

e14 = 0.0403

Piezoelectric stress constants in Cm "2 of alpha-quartz [9).

3) g11T = E2 2T = 39.97 E11s - 61 1T = - 0.76

E3 3 T = 41.03 E3 3 S - 63 3T = 0

Dielectric constants in 10.12 F m-1 of alpha-quartz.

4) a 110) a220) = 13.71 10"6/OC

a33() 7.48

a11 ( 2 ) = a22( 2 ) = 6.5 10 9 /(oC) 2

a33(2 ) = 2.9

ai11 3 ) a 2 2 ( 3 ) = _ 1.9 10-12/( oC) 3

a33(3 ) - 1.5

Coefficients of thermal expansion of alpha-quartz.

5) = .650 103 Nm 4s 2

T, ( ) = - 34.92 10-6,'(°C)

Tp ( 2 ) =- 15.9 I0 "9(-C)2

TP(3) = 5.30 10"12/(°C) 3

Density and its temperature coefficients of alpha-quartz.
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APPENDIX 2

ANALYTICAL EXPRESSIONS FOR THE FREQUENCY-TEMPERATURE CHARACTERISTICS

For practical application, as well as for theoretical consideration, it is necessary to define
the frequency-temperature behavior quantitatively, introducing some constants-the temperature
coefficients. The measured frequency f of a crystal unit as a function of the temperature T can
be developed in a power series in the vicinity of the frequency fo at the arbitrary temperature To:

. f--= ao(6)[T - To ] + bo(0)[T - T O ]2 +

0o f (A2-1)

c0(6)[T -T o]3 . .....

where a.(0), bo(e), and c.(0) are the first-, second- and third-order temperature coefficients of
frequency as defined by

1f( f 1 2f 1 ?3f
ab(6) Lf b0 (e) =-(To - ), co(6) = w( - ) (A2-2)

o? 0 ?T3 0

These constants are functions of the orientation and the other influences mentioned. The temper-
ature coefficient of the frequency is given by

1 f

T f  1-- = a0 (6) + 2bo(9)[T - T O] + 3co(6)[T - T. ] 2  (A2-3)', fo ZT

For the -6 0° to +100 0 C temperature range usually considered, temperature coefficients of order
higher than three can be neglected. The three temperature coefficients can be related to the
corresponding coefficients of the elastic constants involved and the coefficients of expansion.

Relating the power series to the temperature T 1 instead of the temperature T.. we can
write Eq. (A2-1) as

f - fl Af 1- 1  =- -= aj(6)[T - T 1] + bl(e)(T - T1
2 + c(e)[T - T1 ] 3 + -" (A2-4)

fl fl

where the coefficients al(8), bl(e), and cl(e) are referred to ao(0, bo(6). and co(e) by the

following equations

a, =--[a 0 + 2bo(T 1 - T,) + 3co(T 1 -To)2]
P

b [bo + 3co(Tj -T,)] (A2-5)
p
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c1 4-1 co  (A2-5)

P

p : 1 + ao(T1 - T,) + bo(T 1 - TO) 2 + c(T 1 - TO) 3 .

A family of frequency-temperature curves is then given by the following expressions,
assuming the change of the three temperature coefficients to be linear with angle of orientation :

Axf-- a ao(F)[T - TO] + bo(6.)[T - T,] 2 + c,(8,)[T - T.]3

(A2-6)I ao(6) bo(e) Co(O?) (A6
+ e [T - T ] + 6 [T - Te]2 + T IT - T ]31(  - eo,

where aao(9)/60, bo(e)/b0, and bCo(O)/"O are the derivatives with respect to the angle of
the three temperature coefficients, respectively. The linear terms are sufficient for a 1 range;
higher terms for the derivatives of the temperature coefficients must be introduced when con-
sidering a wider range of orientation.

In the vicinity of a zero angle of orientation for the frequency, when ao is zero or very
small, two types of frequency-temperature behavior may be distinguished.

a. In case where b° is rather small and c. large, the frequency-temperature characteristic
has a cubic form. An example is the AT-cut where generally b is smaller than
5 • 10"97(°C)2 and c in the order 100 . 10- 12 /(,C) 3 . Another example is the GT-cut
where both the second- and third-order temperature coefficients are very small.

b. In most of the other cuts, the second-order temperature coefficient is predominant, giving
a parabolic frequency-temperature characteristic.

Considering first the frequency-temperature characteristics of an AT-type crystal, a typical
frequency-temperature curve for an angle of orientation, giving a small negative value for the
first-order temperature coefficient of frequency, is shown in Fig. 40. Some characteristic quanti-
ties for the frequency-temperature behavior are: maximum and minimum temperature (T max, Tmin) ,
together with the corresponding maximum and minimum frequency change (Afxfmax, lf, fmin);

the inflection temperature (Ti), i.e., the temperature for which the derivative of the temperature
coefficient of frequency becomes zero; and the temperatures Ta and Tb, where in the case con-
sidered Ta - Tb = 2 (Tmi n - Tmax).

The analytical expressions for Tmin and Tmax follow from Tf 0:

- b° -+~b - 3aoc°

T- -T 0  (A2-7)
max o
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The corresponding frequency deviation is given by

(+ 2 0  3a0 c + 2bo 3 
- 9aoboc o

fmax 
27c 2

min 0

From this follows the expressions for the difference between the maximum and minimum
temperatures

o~lb2 - 3aoc0

Tmin - T max 0- 3 (A2-9)

and the corresponding total frequency change

ff 4 Vbe2  3aoCo A- 0

f max min 27 C 2

Tf 2f
The inflection temperature T is defined by - 7 0, hence

0
Ti To 3co- (A2-11)

The following equations are of practical interest:

ALf
Af ) f cI, (A2-12)
"f'max min -

(Tmin -Tmax)3 2

and

Af ) Af

mf 2 bm2 - 3a 0co (A2-13)

Tmi n  Tmax 9 c o

Introducing the inflection temperature T i as reference temperature instead of Towhere
T i - To = -b/3co, then bi = 0 and Eq. (A2-1) simplifies to

f f Aff - = a.(T - T i ) + c i ( T - T i ) '  
(A2-14)

fi f
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where

1 aCo - bu 2

p 
8%

c, = p Co (A2-15)

2 boS - 9aoboco
p =1+

27co
2

Equations (A2-7) and (A28) then simplify to

Tmin - T i = 3c, (A2-16)
max

and

) (A2-17)
f ma27c.max1

min

For Equations (A2-9) and (A2-10), we obtain

Tmin - Tmex 3c. (A2-18)

and

A f aAf
S-")max -"n 2c (A2-19)

Equations (A2-12) and (A2-13) simplify to

( _1 ) _ ( _.L) ( _L f .L
f max f nin ci f max f min 2ai (A2-20)3 0 I

(Tmin - Tmax) Tmin -Tmax3

The above formulae describe the frequency-temperature behavior of an AT cut with suf-
ficient accuracy in the temperature range considered.

For the AT-type resonator, there is one special angle of orientation t9j for which for the
inflection temperature Tj, the first-order temperature coefficient aj is zero, so that for this
special orientation the frequency-temperature characteristic is represented by a single term

W = cj(&j) [T - Tj] 3 , aj(&j) = 0 , bj(ej) = 0 . (A2-21)
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This equation may be called the main frequency-temperature characteristic.

In case of the BT-type quartz resonator and similar cuts with a parabolic frequency.
temperature characteristic, the relations given above hold. In the temperature range considered,
only one maximum of the frequency occurs. Instead of the inflection temperature Ti, the tem-
perature Tmax at which the frequency maximum occurs is a significant temperature.

The frequency-temperature characteristic related to its maximum is given by

A = bm(9) [T - Tma] 2 + cm( ) [T - Tma (A2-22)

From Equation (A2-5), we obtain

1
am [a0 + 2b0 (Tmax -TO) + 3c 0 Tmax T) 21 =0

p

bm =IV bo acoe (A2-23)

cm -- co

Further, from Equation (A2-7),

bm - bo
Tma x - T o - 0

(A2-24)
ao  a.

b + b 2b

Trnax as a function of the angle of orientation of the plate can be obtained from the derivatives
of the temperature coefficients a(O), b,(6), and c(O) or from the derivatives of the temperature
coefficients bm(6) and c,(6), with respect to the angle of orientation.
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APPENDIX 3

COMPLETE EXPRESSIONS FOR ab--WHERE Tm IS THE MAXIMUM OR MINIMUM

TEMPERATURE OF THE FREQUENCY-TEMPERATURE CHARACTERISTICS

The expression for the frequency-temperature variation of a particular mode of motion, as
given in Equation (8) and Appendix 2, is used to calculate the temperatures T., where the fre-
quency deviation becomes a maximum or minimum:

b /1 _ 2 a
TAL - T LT 3c 0  3c - 3c (

where a,, be, and co are the temperature coefficients of frequenicy in Equation (8a) taken at the
temperature T,. These coefficients are functions of the orientation of the plate and determined
from Equations (9), (10), and (11).

The variation of T, with respect to the angle 8 follows from Equation (A3-1). The sign
chosen is the same as that in Equation (A3-1).

2 7 T 4 1 a o bo  ao boAT )c ob - 3a2 O -AT +( +- - (A3-2)
- O

-I4 aP -b e -7e9a 6)- b AT (6b - 9,), (A3-3)

where b. is the parabola constant b at T4, and

p = I + aoAT + bo AT2 + c 0 T3, where AT 1, (See A2-5)

I 2xfurther, Ox = - - is is the first-order coefficient of the quantity x with respect to

'3T

the angle 9. Equations (A3-2) and (A3-3) yield when t is substituted for 9.
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APPENDIX 4

VALUES FOR THE TEMPERATURE COEFFICIENTS a, b, c WHEN THE
REFERENCE TEMPERATURE T, IS CHANGED TO-Ti.

(EXAMPLE: THICKNESS MODE C, (yxwl)10°,-33*.)

The first-, second-, and third-order temperature coefficients of frequency ao, b,, c, in the
power series (A2-4) are related to the reference temperature T, when the reference temperature
To is changed to the temperature Ti. Equation (A2-5) which transforms ao, be, co to al, bl, cl
holds. The equation may be applied to the cut q = 10', 6 = -33' which has temperature
coefficients related to the 25 0C temperature, as shown in Table 5. The temperature coefficients
a, b, c were transformed to the temperature 0', -40' , -60' , and -80'C. The transformed values
are as follow:

a b. c Inflection
Ti 10- 6/0 C 10" 9 /(oCj 2  l1 2 /(oC) 3  Temperature

250 C -0.87 -7.81 -21.5 -96rC

00 C -0.532 -6.19 -21.5 -96 0 C

-40 0 C -0.130 -3.62 -21.5 -960C

-60 0 C -0.011 -2.33 -21.5 -96 0 C

-80 0 C 0.06 -1.04 -21.5 -96 0 C

79



DISTRIBUTION LIST
Copies Copies

Comanding General 3 Commanding General
U. S. ArrW Electronics Command U. S. Army Satellite
ATTN: ANISEL-AD Coirmunications Agency
Fort Monmouth, New Jersey ATTN: Technical Documents

Center
Office of the Assistant 1 Fort Monmouth, New Jersey
Secretary of Defense
(Research and Engineering) Comnandin Officer 1
ATTN: Technical Library Sngineer Research
Room 3ElO65, The Pentagon and Development Laboraies
Washington 25, D. C. ATIT: Technical Documants

Center
Chief of Research and 2 Fort Belvoir, Virginia.
Development
Depanrtrent of the Arvy Coranding Officer
Washington 25, D. C. U. S. Army Chemical

Warfare Laboratories
Chief, United States Army 1 ATTN: Technical Library,
Security Agency Building 330
ATTIN: ACofS, G4 (Technical Armr Chemical Center, Maryland
Library)
Arlington Hall Station Conranding Officer 1
Arlington 12, Virginia Harry Diamond Laboratories

ATTN: Library, Building 92#
Com=anding Officer 1 Room 211
U. S. Army Electronics Research Washington 25, D. C.
and Development Activity
ATTIZ: Technical Library Headquarters, United States 2
Fort Huachuca, Arizona Air Force

ATTN: AFCIN
Cormanding Officer Washington 25, D. C.
U. S. ArrV Electronics Research
and Development Activity Rome Air Development Center I
ATTN, SZLWS-AJ AT'il% : RAALD
White Sands, New Ixico Griffiss Air Force Base

New York
Comanding Officer 1
U. S. Army Electronics Headquarters 1
Research Unit Ground Electronics Engineering
P. 0. Box 205 Installation Agency
Mountain View, California ATTN : ROZIZL

Griffiss Air Force Base
Conrnding Officer 1 New York
U. S. Army Electronics Materiel
Support Agency Comanding General 2
ATTN: SELIS-ADJ U. S. Army Materiel Command
Fort Monmouth, New Jersey ATTN: R&D Directorate

Washington 25, D. C.

(1)



Distribution List (Cont)

Copies Copies

Aeronautical Systems Division I Chief, Bureau of Ships 1
ATTN: ASNXRR ATTh: Code 454
Wright-Patterson Air Force Base Department of the Navy
Ohio Washington 25, D. C.

U. S. Air Force Security 1 Chief, Bureau of Ships I
Service ATTN: Code 686B
ATTN* ESD Department of the Navy
San Antonio, Texas Washington 25, D. C.

Headquarters I Director 1
Strategic Air Command U. S. Naval Research Laboratory
ATTN: DOCE ATTN: Code 2027
Offutt Air Force Base, Nebraska Washinton, D. C. 20390

Headquarters 1 Comanding Officer & Director
Research & Technology Division U. S. Navy Electronics Laboratory
ATTIN: RTH ATTN: Library
Bolling Air Force Base San Diego 52, California
Washington 25, D. C.

Commander
Air Proving Ground Center 1 U. S. Naval Ordnance Lqboratory
ATTN: IGAPI White O.k
Eglin Air Force Base, Florida Silver Spring 19, Maryland

Air Force Cambridge Research 2 Commander 20
Laboratories Defense Doc umentation Center
ATTN: CR)l-R ATTE: TISIA
L. G. Hanscom Field Cameron Station, Bldg. 5Bedford, Massachusetts Alexandria, Virginia 22314

Headquarters 2
Electronic Systems Division USAELRDL Liaison Officer I
ATTN" ESAT U. S. Army Tank-Automotive Center
L. G. Hanscom Field Warren, Michigan 48090
Bedford, Massachusetts

AFSC Scientific/Technical 1
Liaison Office USALLRDL Liaison Officer I
U. S,. Naval Air Development Center Naval Research Laboratory
Johnsville, Pa. ATTh: Code 1071

Chief of Naval Research 1 Washington, D. C. 20390

ATTI: Code 427 USAELRDL Liaison Officer I
Department of the Navy Massachusetts Institute of
Washington 25, D. C. Technology

Building 26, Room 131
Bureau of Ships Technical 1 77 Massachusetts Avenue
Library Cambridge 39, Massachusetts
ATTN, Code 312
Main Navy Building, Room 1528
Washington 25, D. C. (2)



Distribution List (Cont)
Copies Copies

USAELRDL Liaison Office 1 Chief, Technical 6
Aeronautical Systems Division Information Division
ATTN: ASDL-9 Headquarters, USAELRDL
Wright-Patterson Air Force Base
Ohio USAELRDL Technical I

Documents Center
U. S. Army Research Liaison 1 SEIRA/ADT, Hexago
Office
Lincoln Laboratory Chief Scientist I
P. 0. Box 73 U.S. Army Electronics Commad
Lexington, Massachusetts Attn: AHSEL-SC

Fort Mormouth, N. J.

USAELRDL Liaison Officer 1

Rome Air Development Center File Unit Nr. 1 1
ATTN: RAOL Rn. 3D-116, Hexagon
Griffiss Air Force Base
New York Commanding Officer 1

U. S. Army Security Agency

USAELRDL Liaison Officer 1 Processing Center
U. S. Army Combat Developments Fort Monmouth, N. J.
Command, CDCIM-EL
Fort Belvoir, Virginia National Bureau of Standards 1

Boulder Laboratories
Attn: Library
Boulder, Colorado

USAEMSA Liaison Office, Far East 1
Signal Office, USARPAC Director 1
APO 958, U. S. Forces National Bureau of Standards
San Francisco, California Attn: Library

Washington 25, D. C.
Technical Dir., SaERA/CS 1
Headquarters, USAELRDL Professor R. D. Mindlin 2

Columbia University
US;aLRDA-;ihite Sands 1 632 West 125th St.
Liaison Office New York 27, N. T.
SELPA/L JW, USAELRDL

Union Thermoelectric Corp. 1
AFSC Scientific/Technical 1 '7212 Circle Ave.
Liaison Office Forest Park, Illinois
SELRA/LNA, USAELRDL

Director, USAEGADWD i Director, Solid State and 18

Attn: ENGM-SS Frequency Control Division

Fort Belvoir, Virginia Director, Electronic Components 1

Mdrine Corps Liaison Office I Department

SELRA4R, USAB LRDL ~Piezoelectric Crystal and 65

USACDC Liaison Office 2 Circuitry Branch

SELRA/LNF, USAELRDL

(3) ARMY, FT. MONMOUTH, NJ-MON 399*66



.. 4~~.' '4 &4

.440

4A 4,

0 UP
&l4 41 IV 44, ,44 411 11 - 0

u~t4'1 m o 0 C

'~~~' 
-H~ 4'C' 

L 
LH )

r n

01 0~. .,4~~4 .4

4 - ' 0 4 0
f- 0 01T R-5

A 41~
h .. 4

L) 0 V.S

I

00 0 0

'o 010 4 0 001 0 10

..E 1,1 't1J -

~~~~ OVA .~ L

*.0 - .4,0 40 S

H0 0 6. L. .

N- N~ ., at 14 H .

4 4 tI

0 4=



4,

414)

440 ,

L 9 4 E-1.1 -t 4 1444.9 
0

6-4

4) M90) .

U V g W,, 0 0 g. w .r44 1 6

W44 4 4-4 Ll Zc l .0 6-

I A
g) c)4 06

64 ItOleo ).0 
0 

Vj

9)6)9) 104)4) ~-4.-4 Ha 14.4 L 6) .)1 H-~I - 94) A-" ' 1 )-

k' 1A A .0

49.4A49) H

0~~ r444 ~ .) '-
44~)(w:~ I 04'I

4I

H w 44

EN A" ; ' 0 *2 wI


